

Hitoshi Kusama, Kiyomi Okabe *, Kazuhiro Sayama, Hironori Arakawa

CO₂ hydrogenation to ethanol over promoted Rh/SiO₂ catalysts

Catalysis Today 28 (1996) 261-266

Department of Surface Chemistry, National Institute of Materials and Chemical Research, MITI, Tsukuba, Ibaraki 305, Japan

Abstract

Hydrogenation of CO₂ to ethanol was carried out over Rh/SiO₂ based catalysts. The main product over the unpromoted catalysts was methane. By adding various metal oxide promoters to the catalysts, CO₂ conversion and selectivity to alcohols (methanol and ethanol) increased. Among the promoters, Li salts showed the most prominent effect on ethanol production. Reaction conditions were optimized for ethanol formation over Rh-Li/SiO2 catalysts. An ethanol selectivity of 15.5% and a CO_2 conversion of 7.0% were obtained at P = 5 MPa and T = 513 K in a flow of $H_2 - CO_2$ premixed gas $(H_2/CO_2 = 3)$ with a flow-rate of 100 cm³/min. By in situ FT-IR analysis of the adsorbed species on the catalysts, the reaction was suggested to proceed via CO intermediate(s).

Keywords: Carbon dioxide hydrogenation to ethanol; Rh/SiO2 catalysts

1. Introduction

Catalytic hydrogenation of CO₂ to chemical feedstocks has been paid much attention as one of the most promising recycling technologies of emitted CO₂ from power stations, iron mills and so forth, which may cause global warming. Under the circumstances, hydrogenation of CO₂ to methanol has been investigated most extensively on supported Cu-ZnO, precipitated Cu-ZnO-Cr₂O₃-Al₂O₃, and precipitated Cu-ZnO-TiO₂ catalysts, including in our previous papers [1-3]. In contrast, the direct processes of CO₂ hydrogenation to more valuable feedstocks, such as higher alcohols, carboxylic acids, and light olefins, have not been attempted yet so much, except for the few cases over Fe-based and Rh-based catalysts [4-6], and Ru-based

2. Experimental

Silica gel (Fuji-Davison, #57), sieved into 16-32 mesh size range and evacuated at 473 K for 2 h, was impregnated with an aqueous solution of RhCl₃ or Rh(NO₃)₃ together with additives by the incipient wetness method, to form $Rh-M/SiO_2$ catalysts (M = additive). After drying at 473 K in vacuo, 1.0 g of catalyst was packed in a fixed-bed flow type reactor, and was pretreated in situ at 623 K for 30 min in a H₂ flow of 200 cm³/min. After cooling to

complex catalysts. In the present paper, the feasibility of CO₂ hydrogenation to ethanol was studied over Rh/SiO₂ catalysts, based on the results obtained through syngas conversion [7]. The effect of additives was also examined to improve conversion and selectivity.

Corresponding author.

room temperature, the H_2 gas was switched into H_2 - CO_2 premixed gas (H_2 / CO_2 = 3) containing 1% of Ar as an internal standard for GC analysis, and the reaction was carried out under appropriate conditions. The effluent gas was analyzed by on-line gas-chromatography.

The dispersion and particle size of Rh on the catalysts were estimated by CO adsorption at 308 K. The electronic states of catalyst surfaces were investigated by XPS, after the in situ H₂ pretreatment within the prechamber. The reaction intermediates and surface species adsorbed on the catalysts were characterized by an in situ

FT-IR spectrometer (JEOL, JIR-100) with a high-pressure high-temperature IR cell [8].

3. Results and discussion

3.1. Effect of additives

Hydrogenation of CO₂ was carried out over unpromoted 5 wt.% Rh/SiO₂ catalyst at various pressures (P). The main product was CH₄ even at 5 MPa, and ethanol was not detected, as listed in Table 1. In comparison with the results

Table 1

Effect of additives on CO₂ hydrogenation over Rh/SiO₂ catalysts (5 wt.% Rh) ^a

Additive ^b	Precursor	CO ₂ conv./%	Selectivity/C%				
			MeOH c	EtOH d	СО	CH ₄	DME e
None		12.4	0.2	0.0	0.1	99.7	0.0
Li	LiCl	7.0	5.2	15.5	15.7	63.5	0.0
Na	NaCl	7.2	0.7	0.0	0.1	99.2	0.0
K	KCl	1.9	2.2	0.0	5.5	92.3	0.0
Mg	$MgCl_2 \cdot 6H_2O$	34.7	0.0	0.0	0.0	100.0	0.0
Ca	CaCl ₂	33.3	0.1	0.0	0.1	99.9	0.0
Sr	SrCl ₂ ·6H ₂ O	2.8	7.6	2.5	27.1	62.6	0.3
Ba	$BaCl_2 \cdot 2H_2O$	3.7	3.9	0.0	0.6	95.5	0.0
Fe	FeCl ₃ ·6H ₂ O	10.4	16.0	3.2	6.8	73.9	0.1
Co	$CoCl_2 \cdot 6H_2O$	3.7	27.4	0.0	8.6	63.6	0.4
Ni	$NiCl_2 \cdot 6H_2O$	6.4	8.3	0.0	2.1	89.6	0.0
Ru	$RuCl_3 \cdot H_2O$	31.1	0.0	0.0	0.0	100.0	0.0
Pd	PdCl ₂	1.9	26.2	0.0	16.6	56.8	0.4
Ir	$IrCl_3 \cdot 3/2H_2O$	7.0	0.8	0.0	0.2	99.0	0.0
Pt	$H_2PtCl_6 \cdot 6H_2O$	4.5	11.6	0.0	81.2	7.0	0.2
Cu	$CuCl_2 \cdot 2H_2O$	0.4	9.6	0.0	83.6	4.4	2.3
Ag ^f	AgNO ₃	2.1	7.4	1.8	30.7	60.2	0.0
Ti	TiCl ₄	67.9	0.0	0.0	0.0	100.0	0.0
V	VOCl ₃	56.2	0.1	0.0	0.0	99.9	0.0
Mn	$MnCl_2 \cdot 4H_2O$	44.8	0.1	0.0	0.4	99.6	0.0
Zr	ZrCl ₂ O · 8H ₂ O	76.0	0.0	0.0	0.0	100.0	0.0
Nb	NbCl ₅	69.4	0.0	0.0	0.0	100.0	0.0
Mo	MoCl ₅	43.0	0.0	0.0	0.1	99.7	0.2
Re	ReCl ₃	46.2	0.2	0.0	0.1	99.6	0.1
Zn	ZnCl ₂	0.3	11.6	0.0	62.6	5.7	20.1
Sn	$SnCl_2 \cdot 2H_2O$	2.8	43.1	0.0	51.4	4.9	0.5
La	$LaCl_3 \cdot 7H_2O$	53.9	0.0	0.0	0.0	100.0	0.0
Ce	$CeCl_3 \cdot 7H_2O$	46.6	0.0	0.0	0.0	100.0	0.0
Sm	$SmCl_3 \cdot 6H_2O$	33.1	0.0	0.0	0.0	100.0	0.0

^a Reaction conditions: T = 513 K, P = 5 MPa, flow-rate = 100 cm³/min, and H₂/CO₂ = 3.

b Rh: additive = 1:1 (atomic ratio).

c Methanol.

d Ethanol.

Dimethyl ether.

f Rh precursor = nitrate.

obtained through syngas conversion, namely that more than 60% of the products are C_2 -oxygenates (i.e. ethanol, acetaldehyde, acetic acid, and so on) at the same pressure [7], it is suggested that CO_2 is more easily hydrogenated than CO, resulting in high CH_4 selectivity in CO_2 hydrogenation even at high pressures.

More than 30 additives were examined with an atomic ratio of Rh:M = 1:1 (M = additive) in order to improve ethanol production, since pronounced effect of additives has been reported on syngas conversion to C_2 -oxygenates [9]. Some of the reaction results are tabulated in Table 1. By adding Ca, V, Mn and Re, CO_2 conversion increased with slight formation of methanol but no ethanol. In contrast, ethanol was formed by adding Li, Sr, Fe and Ag. Among them, Li addition gave rise to the highest ethanol selectivity.

3.2. Optimization of CO_2 hydrogenation over Rh-Li / SiO_2 catalysts

The CO₂ hydrogenation was optimized over Rh-Li/SiO₂ catalyst, which showed the highest ethanol production in Table 1. Table 2 shows the effect of added amounts of Li. The conversion decreased with Li amount, along with the decrease in the numbers of active sites estimated by CO adsorption. This result indicates that the turnover frequency (TOF) did not

Table 2
Effect of added amount of Li on CO₂ hydrogenation over Rh-Li/SiO₂ catalysts ^a

Li/Rh b	CO ₂	Selectivity/C%				CO
	conv. /%	MeOH ^c	EtOH d	СО	CH ₄	adsorbed / cm ³ g ⁻¹
0,0	12.4	0.2	0.0	0.1	99.7	3.11
0.5	8.4	4.1	10.4	8.8	76.8	2.43
1.0	7.0	5.2	15.5	15.7	63.5	1.58
2.0	6.6	4.6	12.7	14.0	68.7	1.22

^a Reaction conditions: T = 513 K, P = 5 MPa, $H_2/CO_2 = 3$, flow-rate = 100 cm³/min, and loading amount of Rh = 5 wt.%.

Table 3 Effect of pressure on CO_2 hydrogenation over 5 wt.% Rh-Li/SiO₂ catalysts (Rh/Li = 1) ^a

Pressure /	CO ₂ conv. /	Selectivity /C%					
MPa	%	MeOH b	EtOH c	СО	CH ₄		
0.1	3.7	0.0	0.0	0.5	99.5		
1	3.6	0.9	2.7	14.2	82.3		
3	5.4	2.8	9.9	17.9	69.4		
5	7.0	5.2	15.5	15.7	63.5		

^a Reaction conditions: T = 513 K, flow-rate = 100 cm³/min, $H_2/CO_2 = 3$.

change significantly by the Li addition. By changing the Li/Rh ratio, the highest selectivity to ethanol was obtained at Li/Rh = 1, with CH₄ selectivity higher than 60%. The increase in ethanol formation implies that further hydrogenation of reaction intermediates to CH₄ was suppressed to some extent over Rh/SiO₂ based catalysts by adding Li. In comparison with the cases of syngas conversion, in which CH₄ selectivity is less than 20% under similar conditions, it is suggested that CO₂ is more easily hydrogenated to CH₄ than CO over Rh-Li/SiO₂ catalysts, as well as Rh/SiO₂ catalyst. Both the selectivities to methanol and CO increased with ethanol selectivity. The good correlations among them suggest that the reaction proceeds consecutively via common intermediates.

By using 5 wt.% Rh-Li/SiO₂ catalysts (Rh/Li = 1), which showed the highest selectivity to ethanol, the reaction conditions were optimized. Table 3 shows the effect of pressure at a temperature T = 513 K with a flow-rate of $100 \text{ cm}^3/\text{min}$, and $H_2/\text{CO}_2 = 3$. The CO₂ conversion increased with pressure. Ethanol was formed at higher pressure than 1 MPa, with suppression of CH₄ formation. Ethanol selectivity, as well as methanol selectivity, increased almost proportionally with pressure. As is expected by equilibrium, ethanol formation needs pressurized conditions, and higher pressure is favorable to ethanol selectivity.

b Atomic ratio.

Methanol.

d Ethanol.

b Methanol.

c Ethanol.

Table 4
Effect of reaction temperature on CO₂ hydrogenation over 5 wt.%
Rh-Li/SiO₂ catalysts (Rh/Li = 1) ^a

Temperature /	CO ₂ conv. /	Selectivity /C%				
K		MeOH b	EtOH ^c	со	CH ₄	
473	1.4	5.3	7.3	55.2	32.2	
493	3.0	6.0	12.8	36.6	44.7	
513	7.0	5.2	15.5	15.7	63.5	
533	15.7	3.2	9.4	6.2	81.3	

^a Reaction conditions: P = 5 MPa, $H_2 / CO_2 = 3$, flow-rate = 100 cm³/min.

Table 4 shows the effect of reaction temperature at P=5 MPa with a flow-rate of 100 cm³/min and $H_2/CO_2=3$. The CO_2 conversion increased with temperature. The main product was CO at low temperature, and CH_4 at higher temperature. The highest selectivity to ethanol was obtained at 513 K. The highest yield of ethanol was accomplished in the range T=513-533 K. By assuming that conversion and CH_4 yield reflect overall reaction rate and the rate of a hydrogenation step to CH_4 , the apparent activation energies of them were estimated at 87 and 121 kJ/mol, respectively. The

Table 5
Effect of H₂/CO₂ ratio on CO₂ hydrogenation a over Rh-Li/SiO₂ catalysts b

H ₂ /CO ₂	CO ₂ conv. /	Selectivity /C%					
		MeOH c	EtOH d	СО	CH₄		
0.6	1.7	1.0	12.3	38.1	48.6		
1.0	2.4	1.8	13.0	30.4	54.9		
3.0	5.4	2.8	9.9	17.9	69.4		
4.0	6.5	2.9	8.5	7.2	81.1		
9.0	13.4	3.5	5.5	5.1	85.8		

^a Reaction conditions: T = 513 K, P = 3 MPa, flow-rate = 100 cm³/min.

higher activation energy of the latter implies that higher temperature is favorable to CH₄ formation, and consequently ethanol selectivity decreases.

Table 5 shows the effect of H_2/CO_2 ratio at P=3 MPa and T=513 K with a flow-rate of $100 \text{ cm}^3/\text{min}$. The CO_2 conversion increased and ethanol selectivity decreased with H_2/CO_2 ratio. The selectivity to CO was almost proportional to ethanol selectivity. The selectivities to CH_4 and methanol increased with H_2/CO_2 ratio

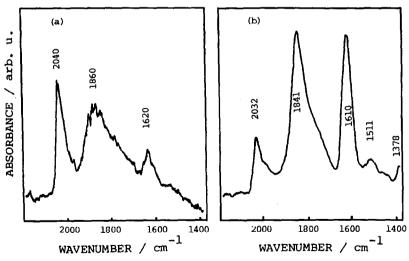


Fig. 1. In situ FT-IR spectra of adsorbed species on (a) 5 wt.% Rh/SiO₂ and (b) 5 wt.% Rh-Li/SiO₂ (Rh/Li = 1:1) catalysts at T = 533 K, P = 5 MPa, and $H_2/CO_2 = 3$.

b Methanol.

c Ethanol.

Loading amounts: Rh = 5 wt.%, Li = 0.3 wt.%.

Methanol.

¹ Ethanol.

3.3. Characterization of reaction intermediates by in situ FT-IR spectroscopy

It was shown that ethanol was formed by CO₂ hydrogenation over Rh-Li/SiO₂ catalysts. In order to speculate about the reaction mechanism, in situ FT-RI of adsorbed species on the catalysts was conducted. Fig. 1 illustrates FT-IR spectra on (a) 5 wt.% Rh/SiO₂ and (b) 5 wt.% $Rh-Li/SiO_2$ (Rh: Li = 1) catalysts at a condition of T = 533 K, P = 5 MPa, and $H_2/CO_2 =$ 3. The CO species adsorbed on Rh were observed on both catalysts. For Cu-ZnO-Cr₂O₃-Al₂O₃ catalysts, it has been suggested that CO₂ is directly hydrogenated to methanol via adsorbed carbonate and formate species [2]. On the contrary, it is suggested that CO₂ is hydrogenated to methanol and ethanol via CO intermediate(s), by considering the facts that CO species adsorbed on Rh is observed in the FT-IR spectra, and that a pronounced amount of CO is detected in the effluent gas of the reaction over Rh-Li/SiO₂ catalysts when ethanol is formed. A plausible mechanism of ethanol formation is depicted in Fig. 2.

Two types of adsorbed CO species were observed in the FT-IR spectrum on the Rh/SiO₂ catalyst (Fig. 1a). The bands at 2040 and 1860 cm⁻¹ were assigned to linear and bridged CO species adsorbed on Rh, respectively. They had almost the same intensity. In contrast, the bridged CO band was more intensive than the linear one on Rh-Li/SiO₂ catalyst, as shown in Fig. 1b. The difference in the relative intensity may reflect the different selectivity on the catalysts: The bridged species interacts with the

Table 6 XPS binding energies a of Rh(-Li)/SiO₂ catalysts (Rh/Li = 1)

Catalyst	Rh 3d _{5/2} (eV)	0 ls (eV)	Si 2p _{3/2} (eV)
Rh/SiO ₂	307.2 ± 0.2	532.9 ± 0.4	103.5 ± 0.2
$Rh-Li/SiO_2$	306.8 ± 0.1	532.7 ± 0.3	103.4 ± 0.2

^a Values referenced to adsorbed Au with Au $4f_{7/2} = 83.8$ eV.

surface Rh more strongly than the linear one, and the former occupies 2 Rh atoms on the surface. The more bridged CO species may provide smaller numbers of unoccupied Rh sites for H₂ adsorption, and the hydrogenation ability of the catalyst will be suppressed. Thus, over Rh-Li/SiO₂ catalysts, hydrogenation to CH₄ may be suppressed, and CO species can be inserted into a CH₃-Rh bond more easily, in comparison with the case of Rh/SiO₂ catalysts. Additionally, bonds assigned to formate species, which was supposed to be adsorbed on Li, were observed on Rh-Li/SiO₂ catalyst at 1511 and 1378 cm⁻¹.

3.4. Electronic state of catalyst surfaces

The IR bands of adsorbed species on the catalysts shifted to a lower wavenumber side by adding Li, as shown in Fig. 1. This shift may imply that the electron density of surface Rh increases by Li, and that the C-O bond of adsorbed species is weakened by more backdonation electrons from Rh. The change in electronic state of surface Rh was also supported by XPS binding energies, as listed in Table 6. The addition of Li brought about a shift in Rh 3d_{5/2}

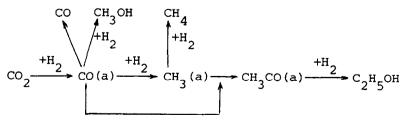


Fig. 2. A plausible reaction mechanism of CO₂ hydrogenation to ethanol.

Temperature/K	Mn/Rh atomic ratio	CO ₂ conv.	Selectivity/%				
			MeOH b	EtOH ^c	СО	CH ₄	
473	0.0	1.4	5.3	7.3	55.2	32.2	
	0.2	3.6	1.7	16.1	7.0	75.2	
	0.5	6.3	1.0	8.9	2.4	87.7	
	1.0	5.7	0.7	4.6	1.5	93.2	
513	0.0	7.0	5.2	15.5	15.7	63.5	
	0.2	16.1	1.3	7.7	2.4	88.6	
	0.5	24.7	0.5	1.1	0.6	97.8	

0.1

Table 7
Effect of MnCl₂ addition on CO₂ hydrogenation over 5 wt.% Rh-Li/SiO₂ catalysts (Rh/Li = 1) a

27.4

^b Methanol. ^c Ethanol.

levels to a lower binding energy side by 0.4 eV, although other levels, such as 0.1 s and that the increase in the intensity of bridged-bond CO species may be brought about by the changes in the qualitative characters of Rh.

1.0

3.5. CO_2 hydrogenation over Rh-Li-Mn / SiO_2 catalysts

It was pointed out in Section (3.1) that the addition of Mn promoter increased the CO₂ conversion. In order to increase ethanol yield, Mn promoter was added to Rh-Li/SiO₂ catalysts. Table 7 shows the reaction results at T = 473 and 513 K over Mn added 5 wt.% Rh-Li/SiO₂ catalysts (Rh/Li = 1). At T = 513K, CO₂ conversion increased and ethanol selectivity decreased with the amount of Mn added. In contrast, at T = 473 K, the highest selectivity to ethanol (16.1%) was obtained over the Rh-Li-Mn/SiO₂ catalyst with an atomic ratio of Mn/Rh = 0.2. The CO_2 conversion increased by Mn addition, and the maximum yields of ethanol were 0.58 and 1.24% at T = 473 and 513 K, respectively, over the catalyst with Mn/Rh = 0.2.

4. Conclusion

0.1

In conclusion, effect of additives to 5 wt.% Rh/SiO₂ catalysts for CO₂ hydrogenation was examined. Among more than 30 additives, Li was the most favorable to ethanol formation. By optimizing the reaction conditions, the highest ethanol selectivity of 15.5% with a CO₂ conversion of 7.0% was obtained. The results of in situ FT-IR suggested that CO₂ was hydrogenated to ethanol via CO intermediate(s), which amount was increased by Li addition.

0.2

99.5

References

- T. Tagawa, G. Pleizier and Y. Amenomiya, Appl. Catal., 18 (1985) 285.
- [2] H. Arakawa, J.L. Dubois and K. Sayama, Energy Convers. Mgmt., 33 (1992) 521.
- [3] H. Arakawa, K. Sayama and K. Okabe, Stud. Surf. Sci. Catal., 77 (1993) 389.
- [4] J. Kaspar, M. Graziani, A.M. Rahman, A. Trovarelli, E.J.S. Vichi and E.C. da Silva, Appl. Catal. A, 117 (1994) 125.
- [5] T. Inoue, T. Iizuka and K. Tanabe, Appl. Catal., 46 (1989) 1.
- [6] N. Ikehara, K. Hara, A. Satsuma, T. Hattori and Y. Murakami, Chem. Lett., (1994) 263.
- [7] H. Arakawa, K. Takeuchi, T. Matsuzaki and Y. Sugi, Chem. Lett., (1984) 1607.
- [8] H. Arakawa, T. Fukushima and M. Ichikawa, Appl. Sectrosc., 40 (1986) 884.
- [9] F. Solymosi, A. Erdohelyi and T. Bansagi, J. Catal., 68 (1981) 371.

^a Reaction conditions: P = 5 MPa, $H_2/CO_2 = 3$, flow-rate = 100 cm³/min.